Identity of commutator and Poisson bracket

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1973 J. Phys. A: Math. Nucl. Gen. 6 L7
(http://iopscience.iop.org/0301-0015/6/2/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.73
The article was downloaded on 02/06/2010 at 04:42

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Identity of commutator and Poisson bracket

F J Bloore
Department of Applied Mathematics, The University, Liverpool, L69 3BX, UK
MS received 13 November 1972

Abstract. The commutator of two functions of n noncommuting variables is proved to be identical to their Fréchet-Poisson bracket.

Lagrange's equations in quantum theory involve derivatives of formal functions of operators with respect to these operators. Such derivatives are naturally defined in the following way. If f, g are functions of (not necessarily commuting) variables q^{1}, \ldots, q^{n}, define

$$
\begin{equation*}
\left(\frac{\partial f}{\partial q^{i}}, g\right)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(f\left(q^{1}, \ldots, q^{i-1}, q^{i}+\epsilon g, q^{i+1}, \ldots, q^{n}\right)-f(q)\right) . \tag{1}
\end{equation*}
$$

We denote by \mathscr{A} the algebra of formal polynomials and power series in the variables q^{1}, \ldots, q^{n}, with complex coefficients. A derivation D on \mathscr{A} is a linear map from \mathscr{A} into \mathscr{A} with the further property that

$$
D(f g)=(D f) g+f(D g)
$$

Evidently if D_{1} and D_{2} are two derivatives on \mathscr{A} such that $D_{1} q^{i}=D_{2} q^{i}$ for all q^{i} then $D_{1} f=D_{2} f$ for all f in \mathscr{A}. The mapping $\{f, g\} \rightarrow\left(\partial f / \partial q^{i}, g\right)$ is a bilinear map from $\mathscr{A} \times \mathscr{A}$ into \mathscr{A} and for fixed $g \in \mathscr{A}$ it is a derivation on \mathscr{A}, since

$$
\left(\frac{\partial}{\partial q^{i}}\left(f_{1} f_{2}\right), g\right)=f_{1}\left(\frac{\partial}{\partial q^{i}} f_{2}, g\right)+\left(\frac{\partial}{\partial q^{i}} f_{1}, g\right) f_{2} .
$$

We shall call $\partial f / \partial q^{i}$ the Fréchet derivative of f with respects to q^{i} in loose analogy to the Fréchet derivative of a mapping between Banach spaces.

In this note we give a proof of the identity:

$$
\begin{equation*}
[f, g] \equiv\left(\frac{\partial f}{\partial q^{i}},\left(\frac{\partial g}{\partial q^{j}},\left[q^{i}, q^{j}\right]\right)\right) . \tag{2}
\end{equation*}
$$

(Repeated indices are summed.)
In the special case when the basis of \mathscr{A} consists of n mutually commuting q 's, and n mutually commuting p 's, the equation (2) becomes

$$
\begin{equation*}
[f(q, p), g(q, p)] \equiv\left(\frac{\partial f}{\partial q^{i}},\left(\frac{\partial g}{\partial p_{j}},\left[q^{i}, p_{j}\right]\right)\right)-\left(\frac{\partial f}{\partial p_{j}},\left(\frac{\partial g}{\partial q^{i}},\left[q^{i}, p_{j}\right]\right)\right) \tag{3}
\end{equation*}
$$

The right-hand side of equation (3) is the natural extension of the Poisson bracket to
noncommuting operators, so we shall call the right-hand side of equation (2) the Fréchet-Poisson bracket. The equation (3) may be helpful in the problem of quantizing arbitrary classical systems.

We proceed to the proof of equation (2). We observe first that

$$
\begin{equation*}
\left(\frac{\partial f}{\partial q^{i}},\left[g, q^{i}\right]\right)=[g, f] \tag{4}
\end{equation*}
$$

since for fixed g, both sides are derivations on f which agree when $f=q^{j}$. Hence equation (4) holds for all $f, g \in \mathscr{A}$. Letting $g=q^{j}$ in equation (4) and replacing f by g yields

$$
\left(\frac{\partial g}{\partial q^{i}},\left[q^{j}, q^{i}\right]\right)=\left[q^{i}, g\right] .
$$

Then substituting the left-hand side for $\left[q^{j}, g\right]$ into equation (4) yields the desired equation (2).

